28 research outputs found

    Melnikov theory to all orders and Puiseux series for subharmonic solutions

    Full text link
    We study the problem of subharmonic bifurcations for analytic systems in the plane with perturbations depending periodically on time, in the case in which we only assume that the subharmonic Melnikov function has at least one zero. If the order of zero is odd, then there is always at least one subharmonic solution, whereas if the order is even in general other conditions have to be assumed to guarantee the existence of subharmonic solutions. Even when such solutions exist, in general they are not analytic in the perturbation parameter. We show that they are analytic in a fractional power of the perturbation parameter. To obtain a fully constructive algorithm which allows us not only to prove existence but also to obtain bounds on the radius of analyticity and to approximate the solutions within any fixed accuracy, we need further assumptions. The method we use to construct the solution -- when this is possible -- is based on a combination of the Newton-Puiseux algorithm and the tree formalism. This leads to a graphical representation of the solution in terms of diagrams. Finally, if the subharmonic Melnikov function is identically zero, we show that it is possible to introduce higher order generalisations, for which the same kind of analysis can be carried out.Comment: 30 pages, 6 figure

    Physics in Riemann's mathematical papers

    Full text link
    Riemann's mathematical papers contain many ideas that arise from physics, and some of them are motivated by problems from physics. In fact, it is not easy to separate Riemann's ideas in mathematics from those in physics. Furthermore, Riemann's philosophical ideas are often in the background of his work on science. The aim of this chapter is to give an overview of Riemann's mathematical results based on physical reasoning or motivated by physics. We also elaborate on the relation with philosophy. While we discuss some of Riemann's philosophical points of view, we review some ideas on the same subjects emitted by Riemann's predecessors, and in particular Greek philosophers, mainly the pre-socratics and Aristotle. The final version of this paper will appear in the book: From Riemann to differential geometry and relativity (L. Ji, A. Papadopoulos and S. Yamada, ed.) Berlin: Springer, 2017

    The combinatorics of plane curve singularities. How Newton polygons blossom into lotuses

    Get PDF
    This survey may be seen as an introduction to the use of toric and tropical geometry in the analysis of plane curve singularities, which are germs (C,o)(C,o) of complex analytic curves contained in a smooth complex analytic surface SS. The embedded topological type of such a pair (S,C)(S, C) is usually defined to be that of the oriented link obtained by intersecting CC with a sufficiently small oriented Euclidean sphere centered at the point oo, defined once a system of local coordinates (x,y)(x,y) was chosen on the germ (S,o)(S,o). If one works more generally over an arbitrary algebraically closed field of characteristic zero, one speaks instead of the combinatorial type of (S,C)(S, C). One may define it by looking either at the Newton-Puiseux series associated to CC relative to a generic local coordinate system (x,y)(x,y), or at the set of infinitely near points which have to be blown up in order to get the minimal embedded resolution of the germ (C,o)(C,o) or, thirdly, at the preimage of this germ by the resolution. Each point of view leads to a different encoding of the combinatorial type by a decorated tree: an Eggers-Wall tree, an Enriques diagram, or a weighted dual graph. The three trees contain the same information, which in the complex setting is equivalent to the knowledge of the embedded topological type. There are known algorithms for transforming one tree into another. In this paper we explain how a special type of two-dimensional simplicial complex called a lotus allows to think geometrically about the relations between the three types of trees. Namely, all of them embed in a natural lotus, their numerical decorations appearing as invariants of it. This lotus is constructed from the finite set of Newton polygons created during any process of resolution of (C,o)(C,o) by successive toric modifications.Comment: 104 pages, 58 figures. Compared to the previous version, section 2 is new. The historical information, contained before in subsection 6.2, is distributed now throughout the paper in the subsections called "Historical comments''. More details are also added at various places of the paper. To appear in the Handbook of Geometry and Topology of Singularities I, Springer, 202
    corecore